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Abstract

When waiting times cannot be observed directly, Little’s law can be applied to estimate the
average waiting time by the average number in system divided by the average arrival rate, but
that simple indirect estimator tends to be biased significantly when the arrival rates are time-
varying and the service times are relatively long. Here it is shown that the bias in that indirect
estimator can be estimated and reduced by applying the time-varying Little’s law (TVLL). If
there is appropriate time-varying staffing, then the waiting time distribution may not be time-
varying even though the arrival rate is time varying. Given a fixed waiting time distribution with
unknown mean, there is a unique mean consistent with the TVLL for each time t. Thus, under
that condition, the TVLL provides an estimator for the unknown mean wait, given estimates of
the average number in system over a subinterval and the arrival rate function. Useful variants of
the TVLL estimator are obtained by fitting a linear or quadratic function to arrival data. When
the arrival rate function is approximately linear (quadratic), the mean waiting time satisfies a
quadratic (cubic) equation. The new estimator based on the TVLL is a positive real root of
that equation. The new methods are shown to be effective in estimating the bias in the indirect
estimator and reducing it, using simulations of multi-server queues and data from a call center.
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1 Introduction

Little’s law (LL, L = λW ) is a useful tool for analyzing operations; e.g., if the average number of

patients in a hospital is 400 and the arrival rate is 100 per day, then the average length of stay

should be about W = L/λ = 400/100 = 4 days. Many applications of LL are quick, like this

example, but others are more elaborate and require more care, e.g, see [16, 17, 18, 19].

Little [15] and Stidham [24] first showed that LL can be put on a sound theoretical foundation.

There is now a well developed theory supporting LL and related conservation laws, as reviewed

recently by [16, 29], and earlier by [6, 26, 28] and others. This supporting theory concerns expected

values of steady state distributions in stochastic models and limits of sample path averages. In

contrast, as emphasized by Little in his recent review [16], most applications involve measurements

over finite time intervals.

Applications with measurements over finite time intervals motivated us in [12] to consider ways

to perform statistical analysis with LL. We focused on the scenario in which we start with an

observation of L(s), the number of items (which we call customers) in a system at time s, for

0 ≤ s ≤ t, for some finite time interval [0, t]. From that sample path, we can directly observe the

number R(0) of arrivals before time 0 remaining in the system at time 0, and the number A(s) of

new arrivals (jumps up) in the interval [0, s], 0 ≤ s ≤ t, but based only on the available information,

we typically cannot determine the waiting time Wk, the time arrival k spends in the system, for

each k, because the customers need not depart in the same order that they arrived.

Within that framework, LL suggests considering the three finite averages

λ̄(t) ≡ A(t)

t
, L̄(t) ≡ 1

t

∫ t

0
L(s) ds, W̄ (t) ≡ 1

A(t)

R(0)+A(t)∑
k=R(0)+1

Wk, (1.1)

where the waiting times are ordered according to the arrival times, including those before time 0.

Given that the finite averages L̄(t) and λ̄(t) in (1.1) have been observed, but the waiting times

cannot be directly observed, it is natural to use the indirect estimator

W̄L,λ(t) ≡
L̄(t)

λ̄(t)
. (1.2)

as a substitute for W̄ (t). It is well known that L̄(t) = λ̄(t)W̄ (t), so that W̄L,λ(t) = W̄ (t), if the

system starts and ends empty (see Theorem 1 of [12]), but not otherwise. Theorem 2 of [12] gives

the exact relation more generally:

W̄L,λ(t)− W̄ (t) =
T
(r)
W (0)− T

(r)
W (t)

A(t)
, (1.3)
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where T
(r)
W (t) is the total residual waiting time of all customers in the system at time t, which

typically is not known if the waiting times are not directly observed.

In [12] we considered estimation in two cases: when the system is stationary and when it is not.

When the system can be assumed to be stationary, E[T
(r)
W (0)] = E[T

(r)
W (t)] in (1.3), so that it is

reasonable to use the indirect estimator in (1.2). Moreover, the very general conditions required

for LL to hold should be satisfied, so that L = λW for underlying parameters L, λ and W . In

that setting, we regarded the finite averages in (1.1) and (1.2) as estimates of these parameters

and showed how to estimate confidence intervals for W̄L,λ(t) using a single observation of L(s),

0 ≤ s ≤ t, by applying the method of batch means. We showed, first, that statistical analysis

with LL can show how well finite averages determine the underlying parameters L, λ and W and,

second, that the indirect estimation using (1.2) can be effective, illustrating with data from the call

center data repository of Mandelbaum [20]; also see [13].

In the second case, the system was assumed to be nonstationary, as commonly occurs when the

arrival rate is time-varying. That typically occurs in service systems, with the arrival rate increasing

at the beginning of each day and decreasing at the end of each day, as illustrated by the call center

example in [12]. Given that there is some underlying stochastic model for which the mean E[W̄ (t)]

is well defined, W̄ (t) can be regarded as an estimate of E[W̄ (t)]. In this nonstationary setting, we

considered ways to refine the estimator W̄L,λ(t) in (1.2) in order to reduce its bias, i.e., to reduce

|E[∆W (t)]|, where ∆W (t) ≡ W̄L,λ(t)−W̄ (t). Assuming that the waiting time (total time in system)

distribution is approximately a fixed exponential distribution over the measurement interval, as is

often approximately appropriate in large-scale service systems, in equation (13) of [12] we proposed

the following refined estimator based on (1.3):

W̄L,λ,r(t) ≡ W̄L,λ(t)−
(R(0)− L(t))W̄L,λ(t)

A(t)
= W̄L,λ(t)

(
1− R(0)− L(t)

A(t)

)
. (1.4)

The exponential distribution assumption was used to justify approximating the residual waiting

time distribution for each customer in the system at time t by the ordinary waiting time distribution,

which in turn is estimated by W̄L,λ(t). In [12] we showed that the proposed bias-reduction scheme

in (1.4) is effective by making comparisons with call center data. Since we also had waiting time

data, we could evaluate the actual bias by comparing the estimates to direct estimates of E[W̄ (t)].

The purpose of the present paper is to investigate a different way to reduce the estimation

bias in the nonstationary case. We apply the time-varying Little’s law (TVLL), as developed by

Bertsimas and Mourtzinou [1], extended and elaborated upon by Fralix and Riano [8], and reviewed
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here in §2, instead of using the classical LL. We show that indeed the TVLL can be used to reduce

estimation bias. We also show that both the new estimators based on the TVLL and the previous

refined estimator in (1.4) have advantages. Moreover, we establish a connection between the two.

Hence, the present paper together with [12] provides improved understanding.

When the staffing can decrease, we need to specify how the system operates when the staffing

level is scheduled to decrease but all servers are busy. We assume that service assignments can

be switched, so that a server becomes available to release at the next service completion by any

server. Thus, we assume that the server scheduled to depart when the servers are all busy remains

in the system until the next service completion by any server. At that time, the server scheduled to

depart leaves and the server completing service starts serving the customer that was being served

by the departing server. In our simulations with decreasing staffing, for simplicity, we keep track

of the remaining service times of all customers and assume instead that the customer with the

least remaining service time completes service immediately to allow the staffing level to decrease.

In the actual system, that server would remain in the system and only leave after that minimum

remaining service time is complete. We separately account for this effect by keeping track of the

number of customers leaving early and the total time that there would be an additional customer

in the system. In that way we show that this effect is negligible in our examples.

There appears to be only limited related literature about statistical analysis with LL. There have

been studies about exploiting LL with a known arrival rate to estimate L or W more efficiently

using an estimate of the other; see [9] and references therein. More generally, there have been

many papers on the statistical analysis of queueing models, including inference with limited data,

as illustrated by [14]. Evidently this is the first paper to exploit TVLL for estimation.

Here is how the rest of this paper is organized: In §2 we review the TVLL, including the

close connection between the TVLL and infinite-server queueing models. In §3 we show how

the TVLL can be applied by assuming that the waiting time distribution is fixed and specified

except for its mean. Theorem 3.1 there shows that the TVLL uniquely characterizes the fixed

mean E[W ]. In §4 we develop a refined estimator based on a linear approximation for the arrival

rate function. Formulas (4.6) and (4.9) there also provide an estimate of the amount of bias

in the indirect estimator W̄L,λ(t), showing when bias reduction is important. In §5 we apply a

perturbation argument to develop an alternative estimator to the estimator in §4 to use when the

estimated derivative of the arrival rate function is small. In §6 we establish Theorem 6.1 showing

the connection between the TVLL approach and the estimator W̄L,λ,r(t) in (1.4) when R(0) and
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L(t) cannot be observed and so are estimated using the TVLL. In §6 we also extend the estimator

W̄L,λ,r(t) in (1.4) to non-exponential waiting time distributions. In §7 we develop a new refined

estimator based on approximating the arrival rate function by a quadratic function. In §8 we

conduct simulation experiments of multi-server queueing models to compare the estimators. In §9

we compare the bias in the alternative estimators using the call center data from [12, 13]. Finally,

in §10 we draw conclusions. Additional material appears in an online appendix.

2 The Time-Varying Little’s Law (TVLL)

The TVLL is a time-varying generalization of LL developed by Bertsimas and Mourtzinou [1],

extended and elaborated upon by Fralix and Riano [8]. For the basic TVLL as in [1], we assume

that arrivals occur one at a time to a system that was empty in the distant past and that the arrival

process has a well-defined arrival-rate function λ(t). (We can specify starting empty at any time t0

by letting λ(t) = 0 for t < t0.) For an interval I of the real line, let A(I) be the number of arrivals

in I. The arrival rate over the interval [0, t] is specified by requiring that

E[A([t1, tt])] ≡ Λ(t1, t2) =

∫ t2

t1

λ(s) ds, −∞ < t1 < t2 < +∞ (2.1)

for some function λ integrable over [t1, t2] for −∞ < t1 < t2 < +∞, which is the arrival rate

function.

As in §2 of [8], let W (t) be the waiting time of the last customer to arrive at or before time t,

with W (t) ≡ 0 if no customers have arrived by time t. We assume that the conditional cumulative

distribution function (cdf) Gt(x) ≡ P (W (t) ≤ x|At), x ≥ 0, of the waiting time (time in system)

for a new arrival at time t, given that an arrival occurs at time t (the event At) is well defined

for all t and a measurable function on [0,∞). (The precise meaning of the cdf Gt is somewhat

complicated; see [1] and [8]. In the most general form, the cdf Gt(x) corresponds to a Palm measure

Pt from a collection of Palm measures {Pt : t ≥ 0}; see §2 of [8], but that framework supports the

interpretation above. The precise meaning is not too important for this paper, because in §3 below

we will make the stronger assumption that the cdf Gt(x) is independent of t.)

For any time t, let T−k(t) be the time of the kth arrival before time t (less than or equal to t),

so that T−(k+1)(t) < T−k(t) ≤ t for all k ≥ 1. Let W−k(t) ≡ W (T−k(t)) be the waiting time by the

arrival at time T−k(t). Then the number in system can be expressed as an infinite sum of random

5



variables or, equivalently, as an elementary stochastic integral via

L(t) ≡
∞∑
k=1

1{W−k(t)≥t−T−k(t)} =

∞∑
k=1

1{W (T−k(t))>t−W (T−k(t))} =

∫ t

−∞
1{W (s)>t−s} dA(s). (2.2)

Taking expectations in (2.2) and letting Gc
s(x) ≡ P (W (s) > x|As) (or, more rigorously, by applying

the Campbell-Mecke formula as in the proof in [8]), we get the TVLL:

Theorem 2.1 (the TVLL, from [1, 8]) Under the conditions above,

E[L(t)] =

∫ t

−∞
Gc

s(t− s)λ(s) ds. (2.3)

Just like LL, the TVLL in Theorem 2.1 has important connections to infinite-server (IS) queue-

ing models, and thus has some history prior to [1]. The connection between LL and the IS queueing

model was discussed and emphasized by the sentence in italics on p. 238 of [26]; a corresponding

representation holds for the TVLL. The TVLL can be regarded as part of the theory for IS models,

because the abstract system can be regarded as a general IS model if we simply call the waiting

time the service time in the IS model. This observation is supported by observing that the TVLL

formula (2.3) coincides with the expected number of busy servers in the Mt/GIt/∞ IS model in

(6) of [11], where the waiting times coincide with the service times. The Mt means that the arrival

process in the IS model is a nonhomogeneous Poisson process, while the GIt means that the service

times are mutually independent and independent of the arrival process, with a general time-varying

service-time cdf Gt. Thus, if we made the stronger assumption that our system can be approx-

imated by the Mt/GIt/∞ IS model, where the waiting times play the role of the service times,

then we would obtain the same formula in (2.3). Indeed, that is a setting in which the meaning of

the cdf Gt(x) is straightforward. The remaining content of Theorem 2.1 is the conclusion that the

formula remains valid if the stochastic assumptions of the Mt/GIt/∞ IS model are relaxed.

The remaining issue is: Does the formula (2.3) for the mean E[L(t)] in the Mt/GIt/∞ IS model

remain valid if the stochastic assumptions are replaced by much weaker conditions? Such general

conditions are provided by Theorem 1 of [1] and Theorems 2.1 and 3.1 of [8], but without discussing

IS models. The fact that the stochastic assumptions in the Mt/GIt/∞ IS model can be relaxed

was observed previously in §5 of [11] and Remark 2.3 of [22]. The martingale arguments in §2 of

[22] are in the spirit of the earlier martingale argument of [23].

The greater validity of (2.3) occurs primarily because the expectation is a linear operator; i.e.,

the expected value of a sum of random variables is the sum of the expectations, without any

stochastic assumptions. (Recall that an integral is essentially a sum.) The biggest drawback of
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(2.3) is that it is hard to specify the time-varying conditional waiting-time distribution Gt(x) for

a general model, beyond the Mt/GIt/∞ IS model. In general, the cdf Gt should be a derived

quantity. Nevertheless, [1] and [8] show that there are important applications of the TVLL.

Remark 2.1 (mean values versus sample path relations) The TVLL in (2.3) is obtained by taking

expected values in the sample path relation (2.2). Thus, the finite-interval relation in (1.3), which is

the basis for the previously refined estimator in (1.4), parallels (2.2) rather than the TVLL (2.3). In

that respect, (1.3) is stronger than the TVLL in (2.3). When we focus on the bias, which involves the

expected value of the estimator, there is no difference. Thus, we anticipate that refinements of the

indirect estimator W̄L,λ(t) in (1.2) based on the TVLL should compare favorably with W̄L,λ,r(t)

in (1.4) when viewed as an estimator of E[W̄ (t)]. In contrast, the estimator W̄L,λ,r(t) has an

advantage when viewed as an estimator of W̄ (t) for one sample path. This insight is substantiated

in our experiments.

3 The TVLL with Fixed Waiting Time Distribution

It is not immediately apparent how to apply the TVLL in Theorem 2.1 to estimate waiting times,

but we show that the TVLL can be used to reduce estimation bias under two additional assump-

tions. First, as in [12], we assume that the waiting time distribution remains fixed throughout the

measurement interval.

Assumption 3.1 The distribution of W (t) is distributed as W , independent of t.

Second, we make the statistical estimation parametric by assuming that the fixed waiting time W

has a cdf that is known except for its mean.

Assumption 3.2 There is a specified cdf G with mean 1 such that P (W ≤ xE[W ]) = G(x), x ≥ 0.

Given Assumptions 3.1 and 3.2, we will be concerned with estimating the mean E[W ] for given cdf

G.

Fortunately, in many applications, Assumptions 3.1 and 3.2 are reasonable. For example, in

well-managed call centers, the waiting times often remain approximately stationary, even though

the arrival rate may be time varying. That is primarily achieved by using appropriate time-varying

staffing. With appropriate staffing, the time spent in queue usually is relatively short compared to

the service time, so that the waiting times tend to not greatly exceed the service times. Even if the

service times and waiting times do vary over the day, they often change relatively slowly compared
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to the rate of change of the arrival rate, so that it is often reasonable to regard the waiting times as

stationary over subintervals, and to have approximately the form of the service time distribution.

Furthermore, as in [12], it is often reasonable to assume that the service time and waiting time

distributions are exponential, in which case G(x) = 1 − e−x. In fact, there is now considerable

evidence that service times are better fit to lognormal distributions than exponential distributions,

e.g., see [3], but those lognormal distributions often can be regarded as approximately exponential,

because the squared coefficient of variation (SCV, c2, variance divided by the square of the mean)

is often very close to 1. That was the case for the call center data studied in [12]. However,

Assumption 3.2 also holds more generally, e.g., when the cdf G is the two-parameter lognormal

distribution with specified SCV and unknown mean.

Under Assumption 3.1, the TVLL in (2.3) reduces to the corresponding Mt/GI/∞ IS formula

in Theorem 1 of [5], i.e.,

E[L(t)] =

∫ t

−∞
P (W > s)λ(t− s) ds = E[λ(t−We)]E[W ], (3.1)

where the W and We are random variables with the fixed waiting-time cdf and the associated

stationary-excess cdf, i.e.,

P (We ≤ x) ≡ 1

E[W ]

∫ x

0
P (W > u) du, E[W k

e ] =
E[W k+1]

(k + 1)E[W ]
. (3.2)

Equivalently, in terms of G, the cdf of W/E[W ] defined in Assumption 3.2, we have

E[L(t)] =

∫ t

−∞
Gc(s/E[W ])λ(t− s) ds. (3.3)

We now show under minor regularity conditions that this version of the TVLL uniquely determines

the mean E[W ], both for a single t and for an average over [0, t]. Paralleling the definition of L̄(t)

as the average over the interval [0, t], let

λ̄t(s) ≡
1

t

∫ t

0
λ(u− s) du (3.4)

for each s under consideration.

Theorem 3.1 (characterization of E[W ]) If the complementary cdf Gc ≡ 1 − G(x) defined in

Assumption 3.2 is positive, continuous and strictly decreasing for all x with Gc(x) → 0 as x → ∞,

and if

E[L(t)] < Gc(0)

∫ t

−∞
λ(s) ds, (3.5)
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then the mean E[W ] is characterized as the unique solution to equation (3.3). If

E[L̄(t)] < Gc(0)

∫ t

−∞
λ̄t(s) ds, (3.6)

where λ̄t(s) is defined in (3.4), then the mean E[W ] is the unique solution to the equation

E[L̄(t)] =

∫ t

−∞
Gc(s/E[W ])λ̄t(s) ds. (3.7)

Proof. Under the conditions, Gc(s/E[W ]) in the integrand is strictly increasing in E[W ] for each

s, converging to 0 as E[W ] ↓ 0 and converging to Gc(0) as E[W ] ↑ ∞. Hence, the right side of

equation (3.3) is continuous and strictly increasing in E[W ]. Condition (3.5) then implies that

there is a unique solution. The same reasoning applies to (3.7) under condition (3.6).

Given estimates of L̄(t) and the arrival rate function λ(s) for s ≤ t, Theorem 3.1 provides an

estimator for E[W ]. In particular, let the estimator W̄tvll(t) be the unique solution to equation

(3.7) after replacing E[L̄(t)] by its estimate L̄(t) and after replacing λ(s) in (3.4) and (3.7) for s ≤ t

by its estimate based on arrival data. An algorithm can be based on bisection search, exploiting

the monotonicity used in the proof of Theorem 3.1.

Given that the values of E[L̄(t)] and λ̄t(s), s ≤ t, are being estimated, it may be useful to

employ the following elementary corollary.

Corollary 3.1 (bounds for E[W ]) Suppose that the assumptions of Theorem 3.1 hold for i = 1, 2

with

E[L̄i(t)] =

∫ t

−∞
Gc(s/E[Wi])λ̄i,t(s) ds for i = 1, 2

for some t. If E[L̄1(t)] ≤ E[L̄(t)] ≤ E[L̄2(t)] and λ̄1,t(s) ≥ λ̄t(s) ≥ λ̄2,t(s), s ≤ t, then the

assumptions of Theorem 3.1 hold for the unsubscripted system and E[W1] ≤ E[W ] ≤ E[W2].

We now proceed to develop simple alternatives to the estimator provided by Theorem 3.1. Since

these new estimators involve roots of equations, these estimators could fail to be unique, but it is

always possible to confirm these estimators by applying Theorem 3.1.

4 An Approximating Linear Arrival Rate Function

Even though the arrival rate function is typically highly time-varying over a day, it is often approx-

imately linear over subintervals, such as an hour or two. We thus can apply a linear approximation,

λ(s) ≈ λl(s) ≡ a+ bs, 0 ≤ s ≤ t, (4.1)
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where a and b are constants such that λl(s) ≥ 0, 0 ≤ s ≤ t, with [0, t] denoting the designated time

interval. Since the number in system at any time depends on the arrival rate prior to that time, it

is important that this approximation also be reasonable prior to time 0 as well as over the interval

[0, t]. It usually suffices to go back a few (e.g., 4) mean waiting times. (That is supported by the

rate of convergence to steady-state in IS models, as given in (20) of [5]. A mean waiting time can

be roughly estimated by W̄L,λ(t) in (1.2).) Obviously no non-constant linear approximation can be

valid on the entire real line, because it would necessarily be negative in one semi-infinite interval.

Nevertheless, judiciously applied, the linear approximation can be very useful, as we will show.

For a specified smooth arrival rate function, the approximation (4.1) can be obtained by a

Taylor series approximation, as discussed in [5]. Ways to fit a linear arrival rate function to data

from a nonhomogeneous Poisson process were studied in [21]. Experiments conducted there show

that it suffices to use an ordinary least square fit unless the arrival rate is nearly 0 at one endpoint.

Then an iterated least squares fit is better; it produces the maximum likelihood estimator.

Given the linear approximation (4.1), Theorem 3.1 is immediately applicable with λt(s) = (a+

b(t−2s)/2)+, where (x)+ ≡ max {x, 0}. However, if the linear approximation is really appropriate,

then it is not necessary to apply Theorem 3.1. As noted in (7) of [5], the mean number of busy

servers in the Mt/GI/∞ model, and thus the TVLL with non-time-varying waiting time W in

(3.1), simplifies if we assume that the arrival rate is approximately linear as in (4.1), i.e., if we can

ignore the nonnegativity constraint. The simple expression involves the parameter

γ2W ≡ (c2W + 1)/2, where c2W ≡ V ar(W )/E[W ]2 (4.2)

is the SCV of the cdf G. (The parameters c2W and γ2W provide partial characterizations of the

cdf G and are independent of the mean E[W ]. For the common case in which G is exponential,

γ2W = c2W = 1.) Using equations (3.1) and (3.2), we we get the associated linear approximation for

E[L(t)]:

E[L(t)] ≈ λl(t− E[We])]E[W ] = λl(t− γ2WE[W ])]E[W ] = (a+ bt)E[W ]− bγ2WE[W ]2.(4.3)

By integrating over [0, t] and dividing by t in (4.3), we obtain

E[L̄(t)] ≡ t−1

∫ t

0
E[L(s)] ds ≈ (a+ b(t/2))E[W ]− bγ2WE[W ]2. (4.4)

Observing that the linear equations as a function of t in (4.3) and (4.4) can also be viewed as

quadratic equations as a function of E[W ], we immediately obtain the following result. (The second
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formula in (4.6) follows from (4.5) below by rearranging terms.) Let λ̄l(t) be the average arrival

rate over [0, t].

Theorem 4.1 (exact expression for E[W ]) If the linear approximations in (4.1) and (4.3) can be

taken to be exact, then E[W ] is a solution to the quadratic equation

γ2Wλ′
lx

2 − λ̄l(t)x+ E[L(t)] = 0, (4.5)

and the bias in E[L̄(t)]/λ̄l(t) can be expressed as

(E[L̄(t)]/λ̄l(t))− E[W ]

E[W ]
= −

γ2Wλ′
lE[W ]

λ̄l(t)
. (4.6)

Now continuing to the estimation, we use equation (4.4) to estimate E[W ] based on the estimate

L̄(t) of E[L̄(t)] and estimates ā and b̄ of the parameters a and b. We use the average arrival rate over

[0, t] of the linear approximation, λ̄l(t) ≡ ā+(b̄t/2) and λ̄′
l ≡ b̄, where the prime denotes a derivative.

(Typically, we will have λ̄l(t) = λ̄(t).) Then, paralleling (4.5), we obtain the new refined estimator

based on a linear approximation of the arrival rate function by solving the quadratic equation

γ2W λ̄′
lx

2 − λ̄l(t)x+ L̄(t) = 0, (4.7)

from which we get

W̄L,λ,l(t) ≡ x ≡ B ±
√
B2 − 4C

2
, (4.8)

for B ≡ λ̄l(t)/γ
2
W λ̄′

l and C ≡ L̄(t)/γ2W λ̄′
l.

Formula (4.6) is very important because it provides an a priori estimate of the bias in the

indirect estimator, assuming that the linear arrival rate function is a suitable approximation. In

particular, we can estimate the relative bias in the indirect estimator W̄L,λ(t), given W̄L,λ(t) and

estimates of the linear arrival rate function by

W̄L,λ(t)− E[W ]

E[W ]
≈ (E[L̄(t)]/λ̄l(t))− E[W ]

E[W ]
= −

γ2Wλ′
lE[W ]

λ̄l(t)
≈ −

γ2W λ̄′
lW̄L,λ(t)

λ̄l(t)
, (4.9)

where only available estimates appear on the right hand side. Formula (4.9) provides an estimate

of the bias in W̄L,λ(t) once W̄L,λ(t) has been determined. Formulas (4.6) and (4.9) show that the

estimated bias reduction is directly proportional to three separate factors: (i) the variability of the

waiting time distribution, as quantified by the scale-free parameter γ2W ≡ (c2W+1)/2, (ii) the relative

slope of the arrival rate function, as quantified by the ratio λ̄′
l/λ̄(t) and (iii) the mean waiting time

itself, E[W ], as estimated by W̄L,λ(t). We can thus anticipate the change in bias reduction when
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one or all of these factors change. For example, for given arrival rate function and given waiting

time variability, the bias reduction (as quantified by the relative error) is directly increasing in the

expected waiting time E[W ]. This shows that the bias reduction is more important when the mean

waiting time is larger and quantifies the impact.

Since the coefficients of the quadratic equation in (4.7) are estimated, they should be regarded

as random variables. Hence the estimator W̄L,λ,l(t) in (4.8) is the root of a random polynomials, as

in [2] and [10]. From Theorem 3.1, we know that the multiple roots in (4.8) is a consequence of the

linear approximation for the arrival rate function. If λ̄′
l < 0, then C < 0, so that

√
B2 − 4C > B

and both roots are real, one positive and one negative; then x is the one positive root. If λ̄′
l > 0,

then we require as a condition that B2−4C > 0 to obtain a real root. We can then check the roots

in equation (3.7).

There can be numerical instability if |γ2W λ̄′
l| is too small, because we divide by γ2W λ̄′

l when

calculating B and C above. In that case, we provide an alternative estimator in the next section.

5 Perturbation Analysis with a Linear Arrival-Rate Function

We have observed that the estimation can be unstable if λ̄′
l in (4.7) is small, because we divide by

it in the solution (4.8). An alternative estimator to the estimator in (4.8) when λ̄′
l is small, and

additional insight, can be gained by performing perturbation analysis.

Lemma 5.1 Consider the quadratic equation c2x
2 − c1x + c0 = 0 with c1 > 0 and c0 > 0, and

let ϵ(c2) ≡ c2c0/c
2
1. If 4ϵ(c2) < 1, then the equation has two positive real roots and the minimum

positive root can be expressed as

x =
c0
c1

(1 + ϵ(c2) + o(c2)) as c2 → 0. (5.1)

Proof. Apply the Taylor series expansion

√
x+ ϵ =

√
x+

ϵ

2
√
x
− ϵ2

8x3/2
+ o(ϵ2) as ϵ → 0.

Based on Lemma 5.1, and assuming that λ̄l(t) = λ̄(t), we can approximate the minimum positive

root of the quadratic equation in (4.7) by the perturbation approximation

W̄L,λ,l,p(t) ≡ W̄L,λ(t)

(
1 + W̄L,λ(t)

(
γ2W λ̄′

l

λ̄(t)

))
. (5.2)

12



The estimator W̄L,λ,l,p(t) is to be preferred to the estimator W̄L,λ,l(t) when γ2W λ̄′
l is small. The

advantage may be apparent by much smaller confidence intervals when confidence intervals are

estimated for both, which is desirable.

Like formula (4.9), formula (5.2) quantifies the importance of the bias reduction, because it

too provides a simple estimate of the approximate relative change in going from W̄L,λ(t) to the

refinement W̄L,λ,l(t), yielding essentially the same result as (4.9); i.e.,

W̄L,λ,l(t)− W̄L,λ(t)

W̄L,λ(t)
≈

W̄L,λ,l,p(t)− W̄L,λ(t)

W̄L,λ(t)
≡

γ2W λ̄′
lW̄L,λ(t)

λ̄(t)
. (5.3)

6 Combining the Two Approaches: Estimating R(0)−L(t) in W̄L,λ,r(t)

We may want to apply the previous refined estimator W̄L,λ,r(t) in (1.4), but we may be unable to

observe R(0) and L(t), because we only have available L̄(t) and arrival process data, and do not

have a full observation of L(s), 0 ≤ s ≤ t. If that is the case, then we might elect to use an estimate

of E[L(0)]− E[L(t)] instead (assuming that L(0) = R(0), as is the case w.p.1 with an arrival rate

function). We now show that we can apply the TVLL to obtain such an estimate.

We first fit the arrival rate function to a linear function. Then we can use (4.3) to estimate

E[L(0)]− E[L(t)]. From (4.3), we get

E[L(0)]− E[L(t)] ≈ −btE[W ] = −λ′tE[W ]. (6.1)

If we estimate E[W ] by W̄L,λ(t) and λ′ by λ̄′ = b̄, then we can estimate R(0)−L(t) by −λ̄′tW̄L,λ(t).

Let W̄L,λ,r,e(t) be the resulting estimator:

W̄L,λ,r,e(t) ≡ W̄L,λ(t)

(
1 +

λ̄′tW̄L,λ(t)

A(t)

)
. (6.2)

Before connecting this new estimator to what we have already done, we extend the estimator

W̄L,λ,r(t) in (1.4) to non-exponential distributions. As a natural approximation, we approximate

the expected residual waiting time of each customer in service at time t by E[We] = E[W ]γ2W , where

We has the stationary-excess waiting-time distribution in (3.2). We obtain the new approximation

W̄L,λ,r,γ(t) ≡ W̄L,λ(t)−
(R(0)− L(t))W̄L,λ(t)γ

2
W

A(t)
= W̄L,λ(t)

(
1−

γ2W (R(0)− L(t))

A(t)

)
, (6.3)

which of course reduces to the previous approximation in (1.4) for exponential waiting times. Now

let W̄L,λ,r,γ,e(t) be the resulting estimator based on (6.3) and estimating R(0)− L(t) as described

above:

W̄L,λ,r,γ,e(t) ≡ W̄L,λ(t)

(
1 +

γ2W λ̄′tW̄L,λ(t)

A(t)

)
. (6.4)
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Theorem 6.1 (connection between the estimators) If we (i) fit the arrival rate function to a linear

function, (ii) use (4.3) to estimate E[L(0)]−E[L(t)] as described above and (iii) use that to estimate

R(0)− L(t) in (6.3) to obtain the estimator W̄L,λ,r,γ,e(t), then

W̄L,λ,r,γ,e(t) = W̄L,λ,l,p(t)

for W̄L,λ,l,p(t) in (5.2).

Proof. The conclusion follows directly from the expressions above, using λ̄(t) = A(t)/t.

7 An Approximating Quadratic Arrival Rate Function

If the arrival rate function is neither approximately constant nor approximately linear, then we can

consider the quadratic approximation

λ(s) ≈ λq(s) ≡ a+ bs+ cs2, 0 ≤ s ≤ t. (7.1)

Let γ2W ≡ (c2W + 1)/2 as before and

θ3W ≡ E[W 3]/6E[W ]3, (7.2)

noting that γ2W = θ3W = 1 if W has an exponential distribution. Given (7.1) with λ′′
q ≡ 2c, we can

apply (14) of [5] and the moment formula in (3.2) to obtain the formula:

E[L(t)] ≈ E[Lq(t)] ≡ λq(t− E[We])E[W ] + (λ′′
q/2)V ar(We)E[W ]

= (a+ bt+ ct2)E[W ]− (b+ 2ct)γ2WE[W ]2 + 2cθ3WE[W ]3

= λq(t)E[W ]− γ2Wλ′
q(t)E[W ]2 + θ3Wλ′′

qE[W ]3, (7.3)

which gives us

E[L̄(t)] ≡ t−1

∫ t

0
E[L(s)] ds ≈ λ̄q(t)E[W ]− γ2W λ̄′

q(t)E[W ]2 + θ3Wλ′′
qE[W ]3, (7.4)

where

λ̄q(t) ≡
1

t

∫ t

0
λq(s) ds = a+ (bt/2) + (ct2)/3, λ̄′

q(t) ≡
1

t

∫ t

0
λ′
q(s) ds = b+ ct.

Given the estimator L̄(t) for E[L̄(t)] and the estimators λ̄q(t), λ̄
′
q(t) and λ′′

q associated with the

quadratic equation in (7.1) fit to the arrival rate data, we obtain a new refined estimator of E[W ],

denoted by W̄L,λ,q(t), by solving the following cubic equation

θ3Wλ′′
qx

3 − γ2W λ̄′
q(t)x

2 + λ̄q(t)x− L̄(t) = 0, (7.5)
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Paralleling §5, we can do a perturbation analysis assuming that λ′′
q << λ̄′

q(t) << λ̄q(t) in (7.5)

to get the approximation

x ≡ W̄L,λ,q(t) ≈ W̄L,λ,q,p(t) ≡ w

(
1 + wδ − w2ϵ

(
1

1− 2wδ

))
, (7.6)

for w ≡ W̄L,λ(t) in (1.2), δ ≡ γ2W λ̄′
q(t)/λ̄q(t) and ϵ ≡ θ3Wλ′′

q/λ̄q(t) with ϵ << δ << 1. (We assumed

that x = x0 + ϵx1 + o(ϵ) and λ′′
q = O(ϵ) as ϵ → 0 and then used (5.2) for the O(1) terms.)

8 Simulation Experiments

We now report the results of simulation experiments to evaluate the new waiting time estimators.

We consider the Mt/GI/st + M multi-server queueing model, having a nonhomogeneous Poisson

arrival process (the Mt), i.i.d. service times distributed according to a random variable S with a

general distribution (the GI), a time-varying staffing level (number of servers, the st) and customer

abandonment with i.i.d. exponentially random patience times (the +M). The arrival process,

service times and patience times are mutually independent. We let the mean service time be

E[S] = 1, so that we are measuring time in units of mean service times. Consistent with many call

centers, we let the mean patience time be 2.

In §8.1 we describe the experimental design for the main experiment. The base case has an

increasing linear arrival rate function, but we also consider quadratic and constant arrival rate

functions. In §8.2 we discuss two important theoretical reference points, for which we can do

exact mathematical analysis for comparison: (i) the corresponding Mt/GI/∞ infinite-server (IS)

queueing models and (ii) the corresponding stationary M/M/s+M models. In §8.3 we present the

results of our main simulation experiments for exponential (M) and Erlang (E4) service times. In

§8.4 we present corresponding results for hyperexponential (H2) service times. In order to provide

an example with greater bias, in §8.5 we consider an example with longer service times, specifically,

E[S] = 4. In order to consider the impact of decreasing staffing, in §8.6 we consider an example

with decreasing linear arrival rate and thus decreasing staffing. In order to illustrate how the

procedures work for more general arrival rate functions, in §8.7 we consider the case of a sinusoidal

arrival rate function.

8.1 Experimental Design

We consider three service time distributions: exponential (M , having parameters γ2S ≡ (c2S+1)/2 =

θ3S ≡ E[S3]/6E[S]3 = 1), Erlang E4 (less variable, a sum of four i.i.d. exponentials, having
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parameters γ2S = 0.6125 and θ3S = 0.3125) and hyperexponential H2 (more variable, a mixture

of two exponentials, having parameters γ2S = 3.0 and θ3S = 15.0). (The parameters γ2W and

θ3W are defined in (4.2) and (7.2), respectively. The same definition applies to the service time

S.) The third H2 parameter is chosen to produce balanced means as in (3.7) of [25]; the cdf is

P (S ≤ x) ≡ 1− p1e
−λ1x − p2e

−λ2x, where p1 = 0.0918, p2 = 0.9082, λi = 2pi, yielding pi/λi = 1/2,

c2 = 5 and E[S3] = 90. The H2 case is included to illustrate more difficult cases caused by high

variability.

Since we consider multi-server queues with reasonable staffing (specified below), the waiting

times (time spent in system) do not differ greatly from the service times. For customers that are

served, the waiting times are somewhat longer because of the time spent in queue, but that usually

is relatively short compared to the service times. Longer waiting times in queue are reduced

by customer abandonment. Thus, in our estimation procedures, we approximate the unknown

(γ2W , θ3W ) by the specified (γ2S , θ
3
S).

Our base case for the time-varying arrival rate is the linear arrival rate function λ(t) = 36 + 3t

over the interval [0, t] for t = 4 and t = 8, assuming the system starts empty at time t = −12,

with λ(−12) = 0. To avoid a startup effect, i.e., serious deviations from the approximating linear

and quadratic arrival rate functions, we start empty in the past. The time lag in the linear

approximation in (4.3) is E[We] ≈ E[Se] = γ2SE[S] = γ2S . Since γ2S = 3 for our H2 distribution, the

system starts empty 4 time lags in the past for H2. For the other distributions, the system starts

empty more time lags in the past.

The average arrival rate λ̄(t) is 42 over [0, 4] and 48 over [0, 8]. Thus, the expected total number

of arrivals in [0, 4] is 168, while it is 384 in [0, 8]. For comparison, we also consider quadratic and

constant arrival rate functions, also starting empty at time −12. Figure 1 shows the three different

arrival rate functions. The quadratic arrival rate function has the form λ(t) = 53.333 + 2.222t −

0.185t2 based on λ(−12) = λ(24) = 0 and peak of 60.0 at t = 6. Thus, λ(0) = 53.333 and

λ(4) = λ(8) = 59.262. The case of constant arrival rate has λ = 45. For these alternative arrival

rate functions, we also estimate average waiting times over the intervals [0, 4] and [0, 8] via the

direct estimator in (1.1).

The time-varying staffing is chosen to stabilize the performance at typical performance levels,

following the method of [11] and [7]. In particular, the staffing is set using the square root staffing

formula

s(t) ≡ ⌈m(t) + β
√

m(t)⌉, (8.1)
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Figure 1: The three arrival rate functions used in simulation experiments: constant (λ(t) = 45),
linear (λ(t) = 36+ 3t) and quadratic (λ(t) = 53.333+ 2.222t− 0.185t2). More details in the fourth
paragraph of §8.1 and §2.1 of the appendix.

where m(t) is the offered load and ⌈x⌉ is the least integer greater than or equal to x. The offered

load is m(t) ≡ E[L(t)] in the associated IS model, which has formula (3.1) with the service time

S playing the role of the waiting time W there. We consider three cases for the quality-of-service

(QoS) parameter β in (8.1): 0, 1 and 2. With abandonment in the model, the first two cases

produce typical performance, while β = 2 corresponding to high QoS, producing performance close

to the IS model.

For the three arrival rate functions, we obtain explicit expressions for the offered load m(t)

using the linear and quadratic approximations in (4.3) and (7.3), and then the staffing via (8.1).

For the linear arrival rate function 36 + 3t, the offered load has approximately the form in (4.3),

yielding m(t) = 36 + 3t− 3γ2W . For the quadratic arrival rate, the offered load has approximately

the form in (7.3), yielding m(t) = 53.333−2.222γ2W −0.370θ3W +(2.222+0.370γ2W )t−0.185t2. (All

these offered loads are nondecreasing, so that the staffing is nondecreasing. We consider cases with

decreasing staffing in §8.6 and §8.7.) For the constant arrival rate, m(t) = λ(t) = 45. We simulated

these models using matlab, performing 100 replications in each case. We report the halfwidths of

95% confidence intervals for all estimates.
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8.2 Theoretical Reference Points

There are two special cases for which we can analyze the performance analytically. These two useful

theoretical reference points are: (i) the corresponding IS models and (ii) the corresponding models

with constant arrival rate and exponential service times.

Infinite-Server Model. For the IS model, the waiting times coincide with the service times, so

that we can calculate everything analytically. For the IS model, E[L(t)] = m(t) in (3.1). We first

consider the case of the linear arrival rate function. Since the approximation (4.3) is accurate for

our example, there is essentially no bias at all in the refined estimator W̄L,λ,l(t) in §4. For the linear

arrival rate function λ(t) = 36 + 3t, the relative slope is λ′/λ̄(t) = 3/42 = 0.071 for the interval

[0, 4] and 3/48 = 0.0625 for [0, 8]. Thus, by formula (4.6), we anticipate that the estimation bias

in W̄L,λ(t) is γ
2
W (λ′/λ̄(t))E[W ] = 7.1γ2W% for [0, 4] and 6.25γ2W% for [0, 8].

For the M , H2 and E4 service time distributions, and the linear arrival rate function, we have

respectively, E[L̄(t)] = 39.0, 33.0 and 40.125 over [0, 4] and 45, 39.0 and 46.125 over [0, 8]. Since the

average arrival rate λ̄(t) is 42.0 over [0, 4] and 48.0 over [0, 8], for the threeM ,H2 and E4 service time

distributions, the indirect estimator W̄L,λ(t) in (1.2) takes the values 39/42 = 0.929, 33/42 = 0.786

and 40.125/42 = 0.955 over [0, 4], and 45/48 = 0.938, 39.0/48 = 0.813 and 46.125/48 = 0.961 over

[0, 8]. That means that the estimation bias in W̄L,λ(t) in (1.2) is, respectively, 7.1%, 21.4% and

4.5% over [0, 4], and 6.2%, 18.7% and 3.9% over [0, 8], as predicted above (by (4.6)).

For the quadratic arrival rate function, we can do a corresponding analysis. For the M , H2

and E4 service time distributions, and the quadratic arrival rate function, we have respectively,

E[L̄(t)] = 56.173, 55.432 and 58.140 over [0, 4] and 62.840, 60.617 and 65.363 over [0, 8]. Since the

average arrival rate λ̄(t) is 58.765 over [0, 4] and 66.173 over [0, 8], for the three M , H2 and E4

service time distributions, the indirect estimator W̄L,λ(t) in (1.2) takes the values 56.173/58.765 =

0.956, 55.432/58.765 = 0.943 and 58.140/58.765 = 0.989 over [0, 4], 62.840/66.173 = 0.950,

60.617/66.173 = 0.916 and 65.363/66.173 = 0.988 over [0, 8]. That means that the estimation

bias in W̄L,λ(t) in (1.2) is, respectively, 4.4%, 5.7% and 1.1% over [0, 4], and 5.0%, 9.2% and 1.2%

over [0, 8]. The bias is approximately δ− ϵ/(1−2δ)×100%, consistent with (7.6), especially for the

M and E4 service time distributions. We see for the IS model that the bias is less in the quadratic

case than in the linear case. We will see that tends to be true for the simulations below as well.
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Constant Arrival Rate and Exponential Service Times. For a constant arrival rate function

and exponential service times, we have the stationary M/M/s+M Erlang-A model, so that we can

calculate the steady-state performance measures. (We used the algorithm described in [27], which

also applies as an approximation to non-exponential patience times.) Since the constant arrival

rate is λ = 45 and E[S] = 1, the stationary offered load is m = λE[S] = 45, so that the staffing

level with QoS parameter β = 0, 1 and 2 is s = 45, 52 and 59. In these three cases of β, the mean

waiting time (in system) is 1.043, 1.0077 and 1.0008; the variance of the waiting time is 0.923, 0.938

and 0.986; the probability of delay is 0.602, 0.185 and 0.028; the probability of abandonment is

0.049, 0.0084 and 0.0008 and the mean number in system L is 47.21, 45.38 and 45.04. First, we see

that the mean waiting time differs little from the mean service time E[S] = 1, but the variance is

reduced (less than V ar(S) = 1), evidently because the abandonments produces some short waiting

times. The probability of abandonment is less than 0.01 for β ≥ 1, but significant for β = 0. From

[11] and [7], we anticipate that the performance in the Mt/M/st +M model with the same service

and abandonment distributions should be similar for these same QoS parameters β. Thus, we can

predict the performance in advance.

8.3 Simulation Results for M and E4 Service

In each case, we first fit constant, linear and quadratic arrival rate functions to the arrival data

using least squares methods, as in [21]. (The exact arrival rates are as in §8.1 and are treated as

unknown.) For the target intervals [0, 4] and [0, 8], we used data from the intervals [−4, 4] and

[−8, 8], respectively. The estimates with 95% confidence intervals are shown in Table 1.

Constant Linear Quadratic

Int. Arrival λ̄(t) a b a b c

[−4, 4] Constant 45.2± 0.7 44.9± 0.5 0.099± 0.197 44.9± 0.7 0.099± 0.197 −0.013± 0.084

Linear 41.7± 0.6 35.8± 0.5 2.907± 0.162 35.4± 0.6 2.907± 0.162 0.069± 0.083

Quadratic 56.6± 0.7 52.1± 0.5 2.167± 0.212 52.8± 0.8 2.167± 0.212 −0.120± 0.112

[−8, 8] Constant 45.1± 0.5 45.0± 0.4 0.017± 0.058 44.7± 0.6 0.017± 0.058 0.011± 0.018

Linear 48.0± 0.5 35.9± 0.3 3.025± 0.064 35.6± 0.5 3.025± 0.064 0.016± 0.016

Quadratic 58.3± 0.6 49.5± 0.4 2.185± 0.071 53.1± 0.5 2.185± 0.071 −0.167± 0.015

Table 1: Fitting constant, linear and quadratic arrival rate functions over the intervals [−4, 4]
and [−8, 8] to the arrival data for each arrival process; estimates with associated 95% confidence
intervals based on 100 replications.

In Table 1, the actual arrival process model is shown in the rows of the second column, while
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the results for the different fitting methods are shown in the subsequent columns of that row. Table

1 shows that fitting a more complex model to the arrival rate function (e.g., linear for constant)

still produces pretty good results.

We next verified that the performance was indeed stabilized over the intervals [0, 4] and [0, 8]

in all cases. For each case, we plotted the time-dependent average waiting time, the percentage

of arrivals delayed, and the percentage of arrivals abandoning over the interval [−12, 12], each

estimated over intervals of length 0.5. We illustrate here with Figures 2, 3 and 4 for the case of

linear arrival rate and M service. The story is clearest for the average waiting times in Figure

2. Since the waiting times tend to differ little from the service times, the average waiting time

tend to be stabilized approximately from the beginning at time −12. However, estimates of the

time-dependent abandonment probability and probability of delay have more statistical error and

require some time to stabilize. It is reasonable to conclude that they are stabilized by time t = −8,

after 4E[We] ≈ 4E[S] = 4. Figure 5 shows the estimated time-dependent probability of delay for

E4 service, in which the less variability makes stabilization faster. Overall, we conclude that, as

expected, the performance is stabilized over [0,4] and [0,8] by the staffing method we have used.

Similar figures for all cases are given in Figures 2-55 of the appendix.

Table 2 shows the estimated waiting times by ten different methods for the linear arrival rate

function. The first estimator is the direct average W̄ (t) in (1.1), which we could not use if the

waiting times were not actually observed. The second is the indirect estimator W̄L,λ(t) in (1.2)

based on LL, whose bias we want to reduce. Then we give the estimators W̄L,λ,r(t) in (1.4) from [12]

and its extension W̄L,λ,r,γ(t) in (6.3), which are based on the sample path relation in (1.3). Next

is the estimator W̄L,λ,l(t) from §4 based on the fitted linear arrival rate function, its perturbation

refinement W̄L,λ,l,p(t) from §5 and the estimated best of these two, W̄L,λ,l,b(t), chosen as the one

with the smaller confidence interval. Finally there are the corresponding three estimators from §7

based on the fitted quadratic arrival rate function.

First, consistent with the very low probabilities of abandonment and delay for β = 1 and 2, we

see that E[W ] is very close to E[S] = 1 in those cases, but is 3− 5% higher for the QoS parameter

β = 0. Second, the bias is evident in the indirect estimator W̄L,λ(t); the confidence intervals

are approximately the same as the others, but the correct values are not inside these confidence

intervals. The same is true for the estimator W̄L,λ,r(t) for the non-exponential E4 distribution,

as expected from §6. All other estimators produce estimates and confidence intervals much like

the direct estimator W̄ (t) itself. Very roughly, the confidence interval halfwidth is approximately
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0.5 with associated 95% confidence interval
based on 100 replications.
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Figure 4: Linear arrival rate and M service -
Average percent of arrivals delayed over pe-
riods of length 0.5 with associated 95% con-
fidence interval based on 100 replications.
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Figure 5: Linear arrival rate and E4 service -
Average percent of arrivals delayed over pe-
riods of length 0.5 with associated 95% con-
fidence interval based on 100 replications.

√
γ2W% for [0, 8] and

√
2γ2W% for [0, 4].

We estimate the bias reduction achieved by our estimators by computing the absolute difference

between (i) the average of the estimate of interest over the 100 replications and (ii) the average of

the direct estimate W̄ (t) over the same 100 replications. Table 3 summarizes these results for all

cases; see Tables 9-11 in the appendix for details. Since the mean waiting time is approximately 1

in each case, these also are approximately percentage errors.

As expected, Table 3 shows that there is very little bias in W̄L,λ(t) for the constant arrival
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GI Int β W̄ (t) W̄L,λ(t) W̄L,λ,r(t) W̄L,λ,r,γ (t) W̄L,λ,l(t) W̄L,λ,l,p(t) W̄L,λ,l,b(t) W̄L,λ,q(t) W̄L,λ,q,p(t) W̄L,λ,q,b(t)

M [0, 4] 0 1.038 ± 0.019 0.980 ± 0.020 1.047 ± 0.020 1.047 ± 0.020 1.058 ± 0.023 1.046 ± 0.022 1.046 ± 0.022 1.062 ± 0.021 1.046 ± 0.021 1.046 ± 0.021

1 1.002 ± 0.016 0.939 ± 0.015 1.005 ± 0.015 1.005 ± 0.015 1.011 ± 0.016 1.000 ± 0.016 1.011 ± 0.016 1.014 ± 0.015 1.000 ± 0.015 1.014 ± 0.015

2 0.996 ± 0.016 0.933 ± 0.014 1.000 ± 0.014 1.000 ± 0.014 1.003 ± 0.015 0.993 ± 0.015 1.003 ± 0.015 1.007 ± 0.013 0.993 ± 0.014 1.007 ± 0.013

[0, 8] 0 1.051 ± 0.013 0.983 ± 0.015 1.050 ± 0.015 1.050 ± 0.015 1.052 ± 0.017 1.044 ± 0.016 1.044 ± 0.016 1.054 ± 0.016 1.045 ± 0.016 1.045 ± 0.016

1 1.010 ± 0.010 0.944 ± 0.011 1.006 ± 0.011 1.006 ± 0.011 1.008 ± 0.012 1.001 ± 0.012 1.001 ± 0.012 1.009 ± 0.011 1.002 ± 0.011 1.009 ± 0.011

2 1.003 ± 0.009 0.938 ± 0.010 0.998 ± 0.010 0.998 ± 0.010 1.000 ± 0.011 0.993 ± 0.011 0.993 ± 0.011 1.002 ± 0.010 0.994 ± 0.010 1.002 ± 0.010

Avg 1.017 0.953 1.018 1.018 1.022 1.013 1.016 1.025 1.013 1.021

E4 [0, 4] 0 1.039 ± 0.009 0.997 ± 0.012 1.069 ± 0.010 1.042 ± 0.011 1.045 ± 0.013 1.040 ± 0.013 1.040 ± 0.013 1.048 ± 0.012 1.041 ± 0.012 1.048 ± 0.012

1 1.010 ± 0.008 0.963 ± 0.010 1.039 ± 0.008 1.011 ± 0.008 1.008 ± 0.010 1.004 ± 0.010 1.008 ± 0.010 1.012 ± 0.009 1.005 ± 0.009 1.012 ± 0.009

2 1.005 ± 0.007 0.959 ± 0.009 1.033 ± 0.008 1.005 ± 0.008 1.003 ± 0.010 0.998 ± 0.010 1.003 ± 0.010 1.006 ± 0.008 1.000 ± 0.009 1.006 ± 0.008

[0, 8] 0 1.048 ± 0.008 1.001 ± 0.008 1.070 ± 0.008 1.044 ± 0.008 1.043 ± 0.010 1.040 ± 0.009 1.040 ± 0.009 1.044 ± 0.009 1.041 ± 0.008 1.041 ± 0.008

1 1.011 ± 0.005 0.967 ± 0.005 1.033 ± 0.006 1.008 ± 0.005 1.006 ± 0.006 1.003 ± 0.005 1.003 ± 0.005 1.007 ± 0.006 1.005 ± 0.005 1.005 ± 0.005

2 1.004 ± 0.005 0.960 ± 0.005 1.026 ± 0.005 1.001 ± 0.005 0.999 ± 0.005 0.997 ± 0.005 0.997 ± 0.005 1.000 ± 0.005 0.998 ± 0.005 0.998 ± 0.005

Avg 1.020 0.974 1.045 1.018 1.017 1.014 1.015 1.020 1.015 1.018

Table 2: Waiting time estimates by ten different methods (described in the fourth paragraph of
§8.3) with associated 95% confidence intervals in the Mt/GI/st model with linear arrival rate
function and the staffing set using the square root staffing formula in (8.1) with the QoS parameter
β. Results are based on 100 replications of the model over the intervals [0, 4] and [0, 8].

Arrival GI W̄L,λ(t) (r) (r, γ) (l) (l, p) (l, b) (q) (q, p) (q, b)

Constant M 0.4 0.2 0.2 0.4 0.4 0.4 0.3 0.3 0.2

E4 0.4 0.1 0.1 0.4 0.4 0.4 0.4 0.2 0.2

Linear M 6.4 0.4 0.4 0.7 0.7 0.8 0.8 0.6 0.6

E4 4.5 2.5 0.2 0.4 0.6 0.5 0.4 0.5 0.5

Quadratic M 3.5 0.4 0.4 0.8 0.7 0.7 0.5 0.9 0.9

E4 0.8 0.9 0.1 0.8 0.6 0.6 0.2 0.3 0.4

Table 3: Absolute difference of the waiting time estimates by ten different methods from the direct
estimate W̄ (t) averaged over varying QoS parameter β = 0, 1 and 2 and two estimate intervals
[0, 4] and [0, 8]. (·) refers to W̄L,λ,(·)(t). Results are in units of 10−2. Details in Tables 9-11 of the
appendix.

rate case. In contrast, Table 3 shows that there is substantial bias for the linear and quadratic

cases, agreeing closely with the values predicted by the IS results in §8.2. Moreover, the refined

estimators do succeed in significantly reducing that bias. Indeed, the estimated bias is less than

1%, the confidence interval halfwidth for the direct estimator W̄ (t), in all cases by all methods.

Overall, as illustrated by Table 3, we find that the quadratic methods are less reliable and

contribute relatively little improvement over the linear approximation even to nonlinear arrival

rate functions. Also, we find that the best estimator is W̄L,λ,r,γ(t) in (6.3). However, the three

estimators based on the linear approximation are also consistently good. By Theorem 6.1, we
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know that the advantage of W̄L,λ,r,γ(t) over W̄L,λ,l,p(t) is due to knowing R(0) − L(t) rather than

estimating it.

8.4 Simulation Results for H2 Service

In this section, we consider H2 service times, in order to illustrate difficult cases caused by higher

variability. Figures 6 and 7 show that the performance is approximately stabilized over the intervals

[0, 4] and [0, 8] for the H2 case as well. However, the greater variability makes stabilization slower

and statistical estimation less precise for the same amount of data; e.g., compare to Figures 2 and

4 for M service times.
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Figure 6: Linear arrival rate and H2 service
with QoS parameter β = 0 - Average waiting
time over periods of length 0.5 with associ-
ated 95% confidence interval based on 100
replications.
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Figure 7: Linear arrival rate and H2 service -
Average percent of arrivals delayed over pe-
riods of length 0.5 with associated 95% con-
fidence interval based on 100 replications.

Table 4 shows the estimated waiting times by ten different methods for the linear arrival rate

function with H2 service times. We first did 100 replications, just as in Section 8.3. As expected

from §8.2, the bias in the indirect estimator W̄L,λ(t) is much greater now than in Table 2. Second,

we see that the halfwidths of the confidence intervals are larger, as expected because of the greater

variability. As before, the estimates and the confidence intervals for the estimators W̄L,λ(t) and

W̄L,λ,r(t) show bias. The other estimates and confidence intervals are close to those for the direct

estimator W̄ (t), except now poor performance is seen for the quadratic approximation. Fortunately,

the confidence intervals remain quite accurate. When there is poor performance, it is revealed by

the large confidence intervals. We see that some of the problem is caused by dividing by small

numbers; there is clear improvement in going from W̄L,λ,q(t) to W̄L,λ,q,p(t) in all cases except for
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β = 1 over [0, 4]. However, for the interval [0, 4], the performance of both methods remains weak.

We anticipated that the poor performance was caused by the greater variability. To better

understand, we investigated further. As an initial step, we performed 1000 replications instead

of 100. However, this does not help. (More results for H2 service with 1, 000 replications can be

found in §2.5 of the appendix). The results in Table 4 for 1, 000 replications show that the poor

performance is not due to the small sample size. The poor cases remain bad.

Since we know that much of the problem with W̄L,λ,q(t) is caused by dividing by small numbers,

we focus on understanding the result of W̄L,λ,q,p(t) on [0, 4] better. Figure 8 shows the histogram

of WL,λ,q,p(t) from the 100 replications for β = 1 and [0, 4]. It turns out that it has five outlier

estimate values (WL,λ,q,p(t) less than 0 or greater than 2) that badly influence the average and

confidence interval; the estimates for these outlier cases were: −1234.700, −.838, −.122, 2.320 and

18.218. We observe that in all these cases, either L(0) is too low or L(t) is too high, making

corrections to the estimators invalid. For instance, Figure 9 shows the sample path of the case with

WL,λ,q,p(t) = −1234.700. In this sample path, the H2 random service times have unusually large

values: we observe 191 arrivals in the interval [0, 4], and their average service times is 1.8 with

maximum value of 35.5, and 10 arrivals whose service time is greater than 10.

We observe similar patterns in other cases. For the cases with β = 0 and β = 2, we used the

same arrival process and service times for different values of β and observe that the six outlier

cases when β = 0 and four outlier cases when β = 2 are caused by the same set of sample

paths that caused problems for the β = 1 case. By getting rid of these (at most six) outlier

values, we get W̄L,λ,q,p′(t) = 0.902 ± 0.066 for β = 0, W̄L,λ,q,p′(t) = 0.863 ± 0.049 for β = 1 and

W̄L,λ,q,p′(t) = 0.866± 0.050 for β = 2, whose confidence intervals are now much smaller. For more

detailed discussion on this, see §2.4 of the appendix.

Table 5 shows the bias reduction achieved by our estimators. Similar to Table 3, since the

mean waiting time is approximately 1 in each case, these also are approximately percentage errors.

The results are less spectacular compared to the M and E4 service in Table 3, but still quite good

considering that the halfwidth of confidence intervals for the direct estimator W̄ (t) are 2 − 4%

for H2. From that perspective, all but the quadratic methods are consistently good, yielding bias

estimates less than 6%. Also, note that if we remove the (at most six) outlier cases for the linear

arrival rate case, the absolute difference of the estimates reduces dramatically. For instance, the

value 219.4 for linear arrival under (q, p) in Table 5 becomes 10.1, as shown under (q, p)′. These

results suggest that in order to improve the performance of quadratic estimators for H2 service
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N Int β W̄ (t) W̄L,λ(t) W̄L,λ,r(t) W̄L,λ,r,γ (t) W̄L,λ,l(t) W̄L,λ,l,p(t) W̄L,λ,l,b(t) W̄L,λ,q(t) W̄L,λ,q,p(t) W̄L,λ,q,b(t)

100 [0, 4] 0 1.041 ± 0.035 0.854 ± 0.026 0.909 ± 0.029 1.017 ± 0.043 1.157 ± 0.061 1.007 ± 0.036 1.007 ± 0.036 0.348 ± 1.511 1.230 ± 0.568 1.230 ± 0.568

1 1.006 ± 0.035 0.811 ± 0.020 0.868 ± 0.021 0.981 ± 0.033 1.058 ± 0.041 0.948 ± 0.027 0.948 ± 0.027 0.567 ± 1.488 −11.3 ± 24.2 0.567 ± 1.488

2 0.998 ± 0.035 0.802 ± 0.017 0.858 ± 0.018 0.971 ± 0.028 1.043 ± 0.038 0.935 ± 0.021 0.935 ± 0.021 0.520 ± 1.490 1.444 ± 1.305 1.444 ± 1.305

[0, 8] 0 1.063 ± 0.027 0.873 ± 0.019 0.931 ± 0.022 1.048 ± 0.029 1.116 ± 0.040 1.018 ± 0.026 1.018 ± 0.026 0.852 ± 0.244 1.009 ± 0.026 1.009 ± 0.026

1 1.021 ± 0.026 0.831 ± 0.014 0.884 ± 0.015 0.991 ± 0.021 1.038 ± 0.027 0.962 ± 0.019 0.962 ± 0.019 0.853 ± 0.202 0.954 ± 0.019 0.954 ± 0.019

2 1.013 ± 0.025 0.822 ± 0.012 0.874 ± 0.013 0.980 ± 0.018 1.020 ± 0.021 0.949 ± 0.015 0.949 ± 0.015 0.970 ± 0.095 0.942 ± 0.015 0.942 ± 0.015

Avg 1.024 0.832 0.887 0.998 1.072 0.970 0.970 0.685 −0.959 1.024

1000 [0, 4] 0 1.052 ± 0.012 0.863 ± 0.008 0.915 ± 0.009 1.018 ± 0.013 1.177 ± 0.018 1.019 ± 0.011 1.019 ± 0.011 −0.65 ± 0.23 0.969 ± 0.219 0.969 ± 0.219

1 1.008 ± 0.011 0.815 ± 0.006 0.868 ± 0.006 0.974 ± 0.010 1.070 ± 0.013 0.952 ± 0.007 0.952 ± 0.007 −0.47 ± 0.18 0.366 ± 0.888 −0.47 ± 0.18

2 0.999 ± 0.011 0.806 ± 0.005 0.859 ± 0.006 0.965 ± 0.009 1.051 ± 0.011 0.941 ± 0.006 0.941 ± 0.006 −0.40 ± 0.17 0.852 ± 0.048 0.852 ± 0.048

[0, 8] 0 1.058 ± 0.009 0.885 ± 0.007 0.940 ± 0.008 1.051 ± 0.011 1.135 ± 0.014 1.033 ± 0.010 1.033 ± 0.010 0.695 ± 0.106 1.029 ± 0.010 1.029 ± 0.010

1 1.009 ± 0.008 0.835 ± 0.005 0.885 ± 0.005 0.986 ± 0.007 1.039 ± 0.008 0.966 ± 0.006 0.966 ± 0.006 0.942 ± 0.049 0.962 ± 0.007 0.962 ± 0.007

2 0.999 ± 0.007 0.825 ± 0.004 0.875 ± 0.005 0.974 ± 0.006 1.022 ± 0.007 0.953 ± 0.005 0.953 ± 0.005 1.005 ± 0.022 0.949 ± 0.006 0.949 ± 0.006

Avg 1.021 0.838 0.890 0.995 1.082 0.977 0.977 0.188 0.855 0.715

Table 4: Waiting time estimates by ten different methods (described in the fourth paragraph of
§8.3) with associated 95% confidence intervals in the Mt/H2/st model with linear arrival rate
function and the staffing set using the square root staffing formula in (8.1) with the QoS parameter
β. Results are based on N = 100 and 1, 000 replications of the model over the intervals [0, 4] and
[0, 8].
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Figure 8: Linear arrival rate and H2 ser-
vice with QoS parameter β = 1 - Histogram
of WL,λ,q,p(t) on [0, 4] from 100 replications;
counts at −0.5 (2.5) indicate the number of
estimates that are less (greater) than −0.5
(−2.5).
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Figure 9: Linear arrival rate and H2 service
with QoS parameter β = 1 - L(t) of a sample
path (dashed line) with an extreme value of
WL,λ,q,p(t) on [0, 4]. Average L(t) with asso-
ciated 95% confidence interval based on 100
replications are also shown.

time, one can increase the number of sample size, but it is more effective if one can detect and

remove the outlier values of WL,λ,q,p(t).
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N Arrival W̄L,λ(t) (r) (r, γ) (l) (l, p) (l, b) (q) (q, p) (q, b) (q, p′)

100 Constant 4.3 3.0 1.0 3.6 4.2 4.2 40.7 7.1 7.1 7.1

Linear 19.1 13.6 2.6 4.8 5.4 5.4 33.9 219.4 21.1 10.1

Quadratic 15.0 11.8 5.5 3.0 6.0 6.0 73.4 6.5 6.5 5.7

1, 000 Constant 2.8 2.3 1.4 2.6 3.1 3.0 40.4 6.4 20.5 6.2

Linear 18.3 13.0 2.6 6.2 4.3 4.3 83.5 16.6 30.5 7.3

Quadratic 13.0 10.0 3.9 1.8 3.8 3.8 86.2 3.4 3.4 3.1

Table 5: Absolute difference of the waiting time estimates by ten different methods from the direct
estimate W̄ (t), averaged over varying QoS parameter β = 0, 1 and 2 and two estimate intervals
[0, 4] and [0, 8]]. Estimates are based on N = 100 and 1, 000 replications of the model over the
intervals [0, 4] and [0, 8]. (·) refers to W̄L,λ,(·)(t) and results under (q, p′) are computed using the
new waiting time estimate after removing extreme values of WL,λ,q,p(t). Results are in units of
10−2. More details in §2.3 - §2.5 of the appendix.

8.5 Longer Service Times

Formulas (4.6) and (4.9) show that the bias in W̄L,λ(t) should be proportional to E[W ]. Thus

there should be more bias in W̄L,λ(t) and we should achieve more bias reduction with longer service

times. We illustrate that now by assuming that E[S] = 4 instead of 1. However, for these longer

service times, the linear and quadratic approximations become less appropriate. Hence, we now use

Theorem 3.1 with the exact arrival rate function, which is 0 before t = −12, as well as the other

methods to do the estimation. We consider the previous case of the linear arrival rate function

with exponential service. Since the system starts empty at time −12, the linear approximation is

valid three mean service times in the past, and so should still be reasonable.

Table 6 presents a summary of the results; see §2.6 of the appendix for more. First, for the

previous case E[S] = 1, the results using Theorem 3.1 coincide with the results for the linear

approximation in the precision we use, so in that case it does indeed suffice to consider the linear

approximation, as claimed before. However, when E[S] = 4, Table 6 shows that the bias in W̄L,λ(t)

is 106.1/4.00 ≈ 26.5%, consistent with formulas (4.6) and (7.6). Moreover, that bias is reduced to

just over 1%, and thus essentially removed, by an application of the estimator W̄tvll(t) based on

Theorem 3.1. The larger bias in W̄L,λ(t) make all approximation methods that use it less accurate,

including W̄Lλ,r(t). The estimators W̄tvll(t) and W̄Lλ,l(t) based on the TVLL are clearly superior

to all other methods in this case.
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E[S] W̄L,λ(t) (r) (tvll) (l) (l, p) (l, b) (q) (q, p) (q, b)

1 6.4 0.4 0.7 0.7 0.7 0.8 0.8 0.6 0.6

4 106.1 29.1 5.3 4.3 50.0 50.0 151.4 69.4 69.4

Table 6: Absolute difference of the waiting time estimates from the direct estimate W̄ (t), averaged
over varying QoS parameter β = 0, 1 and 2 and two estimate intervals [0, 4] and [0, 8]. Estimates
are based on 100 replications of the model. (·) refers to W̄L,λ,(·)(t). Results are in units of 10−2.
More details in §2.6 of the appendix.

8.6 Decreasing Staffing

In this section, we consider a minor modification of the previous linear arrival rate function, with

time reversed. Specifically, the arrival rate function is λ(t) = 48−3t over [0,4] and [0,8]. Otherwise

the experimental design is just as in §8.1. Table 7 gives the estimated parameters for the linear

decreasing arrival rate function over 100 replications.

Constant Linear Quadratic

Int. λ̄(t) a b a b c

[−4, 4] 42.6± 0.6 48.4± 0.5 −2.877± 0.187 48.6± 0.8 −2.877± 0.187 −0.026± 0.100

[−8, 8] 36.1± 0.4 48.2± 0.4 −3.018± 0.068 48.4± 0.5 −3.018± 0.068 −0.009± 0.018

Table 7: Fitting constant, linear and quadratic arrival rate functions over the intervals [4, 4] and [8,
8] to the linear decreasing arrival rate function; estimates with associated 95% confidence intervals
over 100 replications.

As indicated in §1, if a server is scheduled to depart when all servers are busy, then in our

simulations we let that server depart immediately and force the customer with the least remaining

service time to complete service at that time. In fact, we assume that the server scheduled to leave

would actually depart only after that minimum remaining service time has elapsed. At that time,

the server completing service can take over the service of the departing server’s customer, because

service switching is allowed.

To study this effect, Table 8 shows the number of staffing decreases (#dec), the number of de-

partures (#dep), the number of violation (#v) and the percentage of departures that are violations

(%v) in each case. From Table 8 we see that we could estimate the number of violations in advance,

before doing the simulation, by #dec × P (W > 0); see §2.7 of the appendix for more discussion.

Table 9 shows other key performance estimates, including the total early termination time (TETT ),

which can be divided by the number of arrivals to estimate the addition to the mean waiting time.

We show that, for M and E4 service, the average waiting time is consistently increased by about
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0.1% for β = 0 and much less for β = 1 and 2. For H2 service, the average waiting time is con-

sistently increased by about 1.0% or less, which is still negligible. The H2 case is relatively more

problematic, because the remaining waiting times tend to be much longer than E[W ] ≈ E[S] = 1,

usually having mean close to the larger of the two exponential means. Nevertheless, this effect is

still relatively small.

Int. [0, 4] [0, 8]

GI β #dec Pr(Delay) E[#v] #dep #v %v #dec Pr(Delay) E[#v] #dep #v %v

M 0 12 0.68 ± 0.06 8.18 ± 0.69 180.7 ± 2.7 7.97 ± 0.68 4.36 ± 0.36 24 0.67 ± 0.04 16.09 ± 1.06 314.3 ± 3.7 15.61 ± 1.02 4.93 ± 0.30

1 13 0.25 ± 0.05 3.19 ± 0.63 182.0 ± 2.8 3.00 ± 0.64 1.59 ± 0.34 26 0.23 ± 0.04 5.89 ± 0.93 313.4 ± 3.6 5.25 ± 0.90 1.63 ± 0.27

2 14 0.05 ± 0.02 0.69 ± 0.24 182.5 ± 2.9 0.64 ± 0.26 0.33 ± 0.14 28 0.04 ± 0.01 1.11 ± 0.34 313.3 ± 3.6 0.96 ± 0.32 0.29 ± 0.10

H2 0 12 0.37 ± 0.06 4.43 ± 0.74 177.6 ± 2.5 4.14 ± 0.73 2.30 ± 0.40 24 0.41 ± 0.05 9.83 ± 1.30 307.8 ± 3.5 9.42 ± 1.30 3.04 ± 0.41

1 13 0.07 ± 0.02 0.88 ± 0.31 179.2 ± 2.6 0.83 ± 0.31 0.46 ± 0.17 26 0.09 ± 0.03 2.29 ± 0.71 308.6 ± 3.4 2.23 ± 0.77 0.72 ± 0.25

2 14 0.01 ± 0.00 0.08 ± 0.06 179.5 ± 2.6 0.07 ± 0.06 0.04 ± 0.03 28 0.01 ± 0.01 0.27 ± 0.19 308.8 ± 3.4 0.29 ± 0.25 0.09 ± 0.08

E4 0 12 0.67 ± 0.06 8.04 ± 0.67 181.0 ± 2.2 7.95 ± 0.67 4.33 ± 0.34 24 0.66 ± 0.04 15.86 ± 1.06 314.2 ± 3.4 15.24 ± 1.08 4.78 ± 0.31

1 12 0.20 ± 0.04 2.45 ± 0.50 182.2 ± 2.5 2.35 ± 0.52 1.23 ± 0.26 26 0.19 ± 0.03 4.89 ± 0.81 313.2 ± 3.5 4.33 ± 0.74 1.34 ± 0.22

2 13 0.04 ± 0.02 0.56 ± 0.21 182.5 ± 2.6 0.53 ± 0.22 0.28 ± 0.11 27 0.03 ± 0.01 0.93 ± 0.30 313.1 ± 3.5 0.71 ± 0.26 0.22 ± 0.08

Table 8: Early service termination in the 9 different models Mt/GI/st with linear decreasing arrival
rate and the staffing set using the square root staffing formula in (8.1) with the QoS parameter β.
Results are based on 100 replications of the model over the intervals [0, 4] and [0, 8]; #dec indicates
the number of staffing decreases, #dep indicates the number of departures and v means violations.

Int. [0, 4] [0, 8]

GI β E[W ] %Delayed %Aban. %EarlyTer. TETT E[W ] %Delayed %Aban. %EarlyTer. TETT

M 0 1.12 ± 0.02 67.7 ± 5.7 4.15 ± 0.78 4.85 ± 0.42 0.20 ± 0.02 1.11 ± 0.02 65.4 ± 4.4 4.97 ± 0.74 5.35 ± 0.34 0.45 ± 0.04

1 1.04 ± 0.02 23.7 ± 4.7 0.61 ± 0.21 1.61 ± 0.32 0.06 ± 0.02 1.03 ± 0.01 21.0 ± 3.4 0.66 ± 0.19 1.68 ± 0.27 0.12 ± 0.02

2 1.02 ± 0.02 4.6 ± 1.6 0.04 ± 0.03 0.35 ± 0.14 0.01 ± 0.01 1.02 ± 0.01 3.4 ± 1.1 0.04 ± 0.03 0.32 ± 0.10 0.02 ± 0.01

H2 0 1.05 ± 0.04 36.3 ± 6.2 1.93 ± 0.66 3.44 ± 0.49 2.09 ± 0.76 1.04 ± 0.03 41.0 ± 5.5 3.62 ± 1.02 4.13 ± 0.50 4.38 ± 1.25

1 1.01 ± 0.04 6.5 ± 2.3 0.13 ± 0.09 0.91 ± 0.26 1.70 ± 0.66 1.00 ± 0.03 8.8 ± 2.9 0.52 ± 0.35 1.25 ± 0.29 3.80 ± 1.18

2 1.01 ± 0.04 0.5 ± 0.4 0.01 ± 0.01 0.37 ± 0.12 1.51 ± 0.62 0.99 ± 0.03 1.0 ± 0.8 0.04 ± 0.06 0.54 ± 0.14 3.37 ± 1.12

E4 0 1.10 ± 0.02 66.6 ± 5.6 3.05 ± 0.63 4.76 ± 0.38 0.20 ± 0.02 1.08 ± 0.01 64.3 ± 4.4 3.84 ± 0.62 5.17 ± 0.32 0.43 ± 0.04

1 1.02 ± 0.01 19.5 ± 4.1 0.37 ± 0.14 1.39 ± 0.30 0.05 ± 0.01 1.01 ± 0.01 17.1 ± 2.8 0.39 ± 0.11 1.42 ± 0.22 0.10 ± 0.02

2 1.01 ± 0.01 4.0 ± 1.5 0.04 ± 0.03 0.28 ± 0.12 0.01 ± 0.00 1.00 ± 0.01 2.9 ± 0.9 0.04 ± 0.03 0.23 ± 0.08 0.01 ± 0.00

Table 9: Performance of the 9 different models Mt/GI/st with linear decreasing arrival rate and
the staffing set using the square root staffing formula in (8.1) with the QoS parameter β, averaged
over periods of length 0.5. Results are based on 100 replications of the model over the intervals
[0, 4] and [0, 8]; TETT is the total early termination time.

8.7 A Sinusoidal Arrival Rate Function

In order to illustrate how the estimation procedures should apply for a realistic arrival rate function

arising in applications, which will not be exactly linear or quadratic, we now consider a sinusoidal

arrival rate function, as is often done when studying staffing with time-varying arrival rates; e.g.,

see [7]. Specifically, we now consider the arrival rate function λ(t) = 40 + 25 sin(t/2) over the

intervals [0, 4] and [0, 8], starting empty at time −36. As before, let the mean service time be
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E[S] = 1. We consider the cases of M and H2 service, using the same distributions as before.

Assuming that the system starts empty in the infinite past, as in (3.3), exact expressions for

the offered load with M and H2 service, respectively, are m(t) = 40 + 20(sin(t/2)− (1/2) cos(t/2))

and m(t) = 40 + 25(0.5242 sin(t/2) − 0.2897 cos(t/2)) by (15) and (29) of [4], after correcting an

error in (29); see the short appendix here. We consider the same three levels of staffing according

to (8.1) with QoS parameter β = 0, 1 and 2. For M and H2 service, the arrival rate, offered load

and staffing with β = 1 are shown in Figures 10 and 11. These figures show that there is no staffing

decrease in the interval [0, 4], but there is in the interval [4, 8], so that we also study the effect of

server release over [0, 8] when all servers are busy. As shown in §2.8 of the appendix, the impact is

negligible.
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Figure 10: The sinusoidal arrival rate, of-
fered load and staffing for M service accord-
ing to (8.1) with QoS parameter β = 1.
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Figure 11: The sinusoidal arrival rate, of-
fered load and staffing for H2 service accord-
ing to (8.1) with QoS parameter β = 1.

Figures 10 and 11 show that a linear quadratic approximation to the arrival rate function should

be appropriate over the interval [0, 4], but not over [0, 8]. However, a quadratic approximation to

the arrival rate function should be appropriate over both intervals [0, 4] and [0, 8]. The experiment

involves the same methods as before, after fitting linear and quadratic functions to simulation data

for the arrival process. For the target intervals [0, 4] and [0, 8], we base the estimation on data from

the intervals [−2, 4] and [−2, 8]. We then simulate the systems over the interval [−36, 12], starting

empty at time −36. Table 10 shows the performance of the alternative estimators.

As expected, all the refined estimators perform very well for M service over [0, 4], while all but

the linear estimators do over [0, 8]. Evidently, the extra time lag for H2 service prevents the linear

and quadratic approximations for the arrival rate perform well, so that the refined estimators do
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GI Int β W̄L,λ(t) W̄L,λ,r(t) W̄L,λ,r,γ(t) W̄L,λ,l(t) W̄L,λ,l,p(t) W̄L,λ,l,b(t) W̄L,λ,q(t) W̄L,λ,q,p(t) W̄L,λ,q,b(t) W̄L,λ,q,p′ (t)

M [0, 4] 0 14.0 1.8 1.8 5.8 2.1 2.1 4.1 2.1 2.1 2.1

1 14.1 2.1 2.1 4.9 2.6 2.6 3.0 2.7 2.7 2.7

2 14.1 2.1 2.1 4.6 2.7 2.7 2.6 2.8 2.8 2.8

Avg 14.1 2.0 2.0 5.1 2.4 2.4 3.2 2.5 2.5 2.5

[0, 8] 0 0.3 0.1 0.1 9.6 0.7 0.7 1.1 0.2 0.2 0.2

1 0.5 0.1 0.1 9.3 0.5 0.5 0.7 0.5 0.5 0.5

2 0.5 0.1 0.1 9.2 0.5 0.5 0.7 0.5 0.5 0.5

Avg 0.4 0.1 0.1 9.3 0.6 0.6 0.8 0.4 0.4 0.4

H2 [0, 4] 0 20.4 12.2 4.0 6.9 11.7 6.9 263.2 100.2 100.2 44.7

1 20.5 12.9 2.2 10.1 8.8 8.8 260.2 91.0 91.0 47.8

2 20.6 13.0 2.0 10.5 8.4 8.4 259.7 93.1 93.1 50.6

Avg 20.5 12.7 2.8 9.2 9.6 8.1 261.0 94.7 94.7 47.7

[0, 8] 0 6.8 6.5 6.0 5.1 4.1 4.1 219.8 49.2 219.8 44.1

1 7.1 6.6 5.6 4.3 4.6 4.6 216.5 43.3 216.5 43.3

2 7.1 6.5 5.4 4.3 4.5 4.5 215.9 42.6 215.9 42.6

Avg 7.0 6.6 5.7 4.6 4.4 4.4 217.4 45.0 217.4 43.3

Table 10: Absolute difference of the waiting time estimates from the direct estimate W̄ (t) for
varying QoS parameter β = 0, 1 and 2 and averages over them in the Mt/H2/st model with
sinusoidal arrival rate function and the staffing set using the square root staffing formula in (8.1)
with the QoS parameter β. Two estimate intervals are [0, 4] and [0, 8]. Estimates are based on
100 replications of the model. (·) refers to W̄L,λ,(·)(t). W̄L,λ,q,p′(t) is the new waiting time estimate
after removing the outliers (WL,λ,q,p(t) < 0 or WL,λ,q,p(t) > 2). Results are in units of 10−2. More
details in §2.8 of the appendix.

not perform nearly as well for H2. The estimators W̄L,λ,r,γ(t) and W̄L,λ,l(t) clearly help, especially

over [0, 4], but the quadratic estimators fail completely.

9 Comparisons of Estimators Using Call Center Data

We now compare the performance of the different estimators of the mean waiting time using the

same call center data as in [12, 13]. The data are for one class of customers from an American

bank on 18 weekdays in May 2001. As in §8, we have data for waiting times as well as arrivals and

the number in the system, so that we can compare all the estimators for E[W ] based on L̄(t) and

the estimated arrival rate to the direct sample mean W̄ (t) in (1.1).

It is natural to start by computing and plotting the finite averages λ̄(t) and W̄L,λ(t) in (1.1)

and (1.2), as shown in Figures 12 and 13 below for the day May 7. From such plots we can evaluate

when Assumption 3.1 is approximately valid and when the arrival rate is approximately constant,

linear or quadratic.

First, Figure 12 shows that the arrival rate is increasing in [7, 10], approximately stationary in

[10, 13] and [13, 16], decreasing in [16, 18] and again decreasing in [18, 22] but with less steep slope.
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Figure 12: Arrival rate and its approxima-
tions by constant, linear and quadratic func-
tions fitted to 5 intervals, [7, 10], [10, 13],
[13, 16], [16, 18] and [18, 22], on May 7.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

3

6

9

t

tim
e 

sp
en

t i
n 

th
e 

sy
st

em
, m

in

 

 

W
k

hourly avg
direct
L, λ
L, λ, p

Figure 13: Scatter plot of the waiting times
and its hourly averages, the direct estimator
W̄ (t) in (1.1), the indirect estimator W̄L,λ(t)
in (1.2) and the refined estimator W̄L,λ,p(t)
from §5 of each hour in [7, 22] on May 7.

Hence, we divide each day into 5 intervals, [7, 10], [10, 13], [13, 16], [16, 18] and [18, 22]. Figure 12

also shows the fit to constant, linear and quadratic functions in each interval. Second, Figure 13

shows, in addition to a scatter plot of the waiting times, (i) the direct estimator W̄ (t) in (1.1),

(ii) the indirect estimator W̄L,λ(t) in (1.2) and (iii) the refined estimator W̄L,λ,p(t) from §5. Thus,

we see that Assumption 3.1 tends to be good for the actual waiting times, that it is revealed by

our indirect estimator W̄L,λ(t), and that the bias and bias reduction are not great, as predicted by

formulas (4.6) and (4.9).

Figures 3, 5 and 6 of [12] show that the waiting times are relatively stationary over the day,

unlike the arrival rate and the number in the system. Nevertheless, the waiting times do fluctuate

over time substantially for some days, especially outside of normal business hours ([9, 17], i.e., nine

to five). Possible reasons are inappropriate time-varying staffing and the lower call volumes outside

of normal business hours. Hence, among the 18 days, we picked three days for which Assumption

3.1 holds approximately holds up to 6 pm. The three days are May 7, 18 and 21. Figure 13 shows

the results for May 7; see §3 of the appendix for the others.

The estimated values of c2W and E[W 3]/E[W ]3 for the three days were compared to the expo-

nential values 1 and 6. With rare exceptions, the estimates of c2W consistently fell in the interval

[0.90, 1.10], while the estimates of E[W 3]/E[W ]3 tended to fall in the interval [5.5, 8.5], with average

about 7.0, which is somewhat higher that 6.0. Hence, Assumption 3.2 is approximately valid too

for G exponential.
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Tables 11 and 12 show the average absolute errors of the different estimators. for the selected

3 days and all 18 days. As expected, there is more bias and bias reduction at the ends of the day

when the system is nonstationary, and the bias is reduced by the refined estimators.

Int. W̄L,λ(t) (r) (l) (l, p) (q) (q, p)

[7, 10] 3.77 0.76 4.69 0.81 110.96 5.54

[10, 13] 0.25 0.19 0.56 0.56 58.88 0.70

[13, 16] 0.50 0.55 0.54 0.54 108.87 0.87

[16, 18] 3.30 0.44 0.64 0.66 101.88 2.42

[18, 23] 1.44 0.78 1.26 1.07 91.09 1.22

Table 11: Comparison of the different estimators using call center data: Average absolute error of
the estimates for each time interval over 3 days ((·) refers to W̄L,λ,(·)(t)), in units of 10−2. More
details in §3.2 of the appendix.

Int. W̄L,λ(t) (r) (l) (l, p) (q) (q, p)

[7, 10] 3.28 0.57 2.01 0.89 165.03 4.99

[10, 13] 0.87 0.34 0.82 0.82 749.41 2.19

[13, 16] 0.58 0.51 0.57 0.57 96.30 1.10

[16, 18] 3.14 0.78 1.50 1.68 756.52 4.85

[18, 23] 1.23 1.05 1.56 1.59 93.62 1.08

Table 12: Comparison of the different estimators using call center data: Average absolute error of
the estimates for each time interval over 18 days ((·) refers to W̄L,λ,(·)(t)), in units of 10−2. More
details in §3.3 of the appendix.

10 Conclusions

When waiting times cannot be observed directly, Little’s law can be applied to estimate the average

waiting time by the average number in system divided by the average arrival rate. However, for

estimation based on data over a finite time interval [0, t], that simple indirect estimator W̄L,λ(t) ≡

L̄(t)/λ̄(t) in (1.1) and (1.2) tends to be biased significantly when the arrival rates are time-varying

and the service times are relatively long, as we have shown in examples here, see especially §8.5.

In this paper we have shown how the time-varying LL (TVLL, in Theorem 2.1) can be used to

estimate the bias in W̄L,λ(t) and produce refined estimators that reduce that bias under Assump-

tions 3.1 and 3.2, stipulating that the waiting time distribution is not time-varying and is specified

except for its mean. Theorem 3.1 shows that the TVLL uniquely characterizes the mean waiting
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time under those assumptions and thus produces a well defined estimator for the expected wait

E[W ] given an estimate of L̄(t) and the arrival rate function over the subinterval. When E[W ]

is relatively large, the estimator W̄tvll(t) based on Theorem 3.1 can perform much better than all

other methods, as shown for the case E[S] = 4 in Table 6 in §8.5.

The TVLL estimator W̄tvll(t) based on Theorem 3.1 in §3 is somewhat complicated, requiring

numerical integration, search and an estimation of the arrival rate function. However, we show that

convenient modifications of the TVLL estimator can be developed if we fit a linear or quadratic

function to the arrival rate data. We have shown that the arrival rate function can be fit to linear

and quadratic functions using least squares methods, as shown in [21]. We developed the estimators

W̄L,λ,l(t) in §4 and W̄L,λ,q(t) in §7 based on approximating the arrival rate function by, respectively,

linear and quadratic functions over a subinterval. When the arrival rate function can be regarded

as approximately linear (quadratic) over the intended interval and some time into the past (a few

mean waiting times), then it suffices to specify only the second moment or SCV (second and third

moments) of the cdf G instead of the full cdf G. For multi-server queueing models, the waiting

times do not differ greatly from the service times, so we may use the service time distribution as

an approximation for the shape of the waiting time distribution, i.e., to specify the parameters γ2W

in (4.2) and θ3W in (7.2), representing the scaled second and third moments. When the arrival rate

function is approximately linear (quadratic), the mean waiting time satisfies a quadratic (cubic)

equation. The new estimator based on the TVLL is a positive real root of that equation.

Solving the quadratic and cubic equations can lead to dividing by small quantities. To address

that problem, we developed alternative perturbation estimators W̄L,λ,l,p(t) and W̄L,λ,q,p(t) in (5.2)

and (7.6), respectively. These are appropriate when the first derivative of the approximating linear

arrival rate function or the second derivative of the approximating quadratic arrival rate function

are too small. When confidence intervals are estimated, the perturbation estimator should be used

if its confidence intervals are much smaller.

For the common case of an approximating linear arrival rate function, formulas (4.6) and (4.9)

based on Theorem 4.1 provides valuable insight, giving a simple expression for the bias in W̄L,λ(t) in

(1.2), all of which could be removed if there were no noise in the estimation. Moreover, our experi-

ence indicates that this bias estimate is also good for nonlinear arrival rate functions. Formulas (4.6)

and (4.9) show that the estimated bias is directly proportional to three separate factors: (i) the vari-

ability of the waiting time distribution, as quantified by the scale-free parameter γ2W ≡ (c2W +1)/2,

(ii) the relative slope of the arrival rate function, as quantified by the ratio λ̄′
l/λ̄(t) and (iii) the
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mean waiting time itself, E[W ], as estimated by W̄L,λ(t). We can obtain a rough estimate of the

bias in W̄L,λ(t) before considering any refined estimators. We can also see what happens when one

or all of these factors change. We clearly see that the bias reduction is more important when the

mean waiting time is large, with the relative error removed being directly proportional to E[W ].

As predicted, the bias for the the Mt/GI/st+M queueing models in §8 is about four times greater

when the mean service time is increased from E[S] = 1 to E[S] = 4. As predicted, the bias was

also roughly proportional to the variability parameter γ2W ≡ (c2W + 1)/2 for the three service time

distributions M , H2 and E4 considered in §8. We could predict in advance that the bias is relatively

low (about 3%) in the call center example in §9.

From the results of the simulation experiment for the Mt/GI/st+M model in §8 with E[S] = 1,

as summarized by Table 3, we can draw several conclusions. First, the new refined estimator

W̄L,λ,r,γ(t) in (6.3), which is an extension of the previous refined estimator W̄L,λ,r(t) in (1.4) for

exponential waiting-time distributions studied in [12], was found to consistently provide the most

bias reduction. As explained in Remark 2.1, that is not too surprising, because W̄L,λ,r,γ(t) is based

on the sample path relation in (1.3), whereas the TVLL in Theorem 2.1 is an expression for the

mean. However, the estimator W̄L,λ,r,γ(t) in (6.3) does require knowledge of R(0) and L(t), the

number in system at the interval endpoints.

In §6 we showed that, if we use a linear approximation for the arrival rate function, then the

TVLL can be applied to estimate the expected value E[R(0) − L(t)] when R(0) and L(t) are

not known. Theorem 6.1 shows that the resulting estimator W̄L,λ,r,γ,e(t) reduces to the estimator

W̄L,λ,l,p(t) in §5 based directly on the TVLL. Hence, the advantage of the previous refined estimator

W̄L,λ,r(t) in (1.4) and its refinement to non-exponential service times W̄L,λ,r,γ(t) in (6.3) based on

the sample path relation (1.3) over the estimator W̄L,λ,l,p(t) based on TVLL is due to exploiting

knowledge of R(0) and L(t).

In §8.5 we also considered examples of the Mt/M/st + M model with longer service times,

in particular, with E[S] = 4 instead of E[S] = 1. For these examples, the bias in W̄L,λ(t) was

approximately 25%. With such a large bias, the estimator W̄L,λ,r,γ(t) = W̄L,λ,r(t) performs poorly.

For this example with very long service times, the estimators W̄tvll(t) and W̄L,λ,l(t) were far superior.

As a consequence, we conclude that the estimator W̄L,λ,r,γ(t) based on the sample path relation

(1.3) and the estimators W̄tvll(t), W̄L,λ,l(t) and W̄L,λ,l,p(t) based on the TVLL all can be useful.

We found that these refined estimators were also effective in the call center example in §9.

However, because the waiting times there were relatively short (3 − 4 minutes), the bias in the
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indirect estimator W̄L,λ(t) in (1.2) was relatively small, less than 4%. In the call center example,

the estimator W̄L,λ,l,p(t) in §5 tended to perform best, roughly equivalent to the refined estimator

in §5.1 of [12] based on Theorem 2 of [12]. However, overall, the estimators W̄L,λ,q(t) and W̄L,λ,q,p(t)

based on a quadratic approximation for the arrival rate function were less useful.

It is also noteworthy that the confidence intervals for all the refined estimators (shown in the

appendix) were found to be roughly the same as for the indirect estimator W̄L,λ(t) in (1.2), provided

that division by small values did not require using the perturbation estimators. Thus, we deduce

that no additional variance must be incurred in order to reduce the bias.

In summary, formulas (4.6) and (4.9) based on Theorem 4.1 provides valuable insight, giving a

simple approximate expression for the bias in W̄L,λ(t) in (1.2), most of which can be removed by

the methods here if there are ample data. If there is significant variation in the arrival rate (as

measured by λ′/λ̄(t) in a linear approximation of the arrival rate function) and the waiting times

are relatively long (as measured by E[W ] and estimated by W̄L,λ(t)), then there can be significant

bias, which can be estimated and reduced by the methods here.
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A More on the Offered Load

In this appendix we correct formula (29) of [4] for m(t), the time-varying mean number of busy

servers, in the Mt/Hk/∞ model with sinusoidal arrival rate λ(t) ≡ λ̄ + β sin(γt) as in (6) of [4],

service-time cdf

G(x) ≡ P (S ≤ x) ≡ 1−
k∑

i=1

pie
−µix, x ≥ 0, (A.1)

where E[S] =
∑k

i=1(pi/µi) = 1, as in (28) of [4] and starting empty in the infinite past. The

following replaces formula (29) in [4], correcting errors in the constants Ai and Bi in Proposition

A.1 below.

Proposition A.1 For the Mt/Hk/∞ model above,

m(t) = λ̄+ β

k∑
i=1

(Ai sin(γt)−Bi cos(γt)) , (A.2)

where

Ai ≡
piµi

µ2
i + γ2

and Bi ≡
piγ

µ2
i + γ2

. (A.3)

Proof. Formula (A.2) can be derived from the general formula for m(t) in the Mt/GI/∞ model

with the sinusoidal arrival rate function above given in Theorem 4.1 of [4] in two different ways.

One way is to directly derive the distribution of Se given the distribution of S in (A.1) above, which

turns out also to be Hk with the same parameters µi but new parameters pi. We will use another

way, which is to represent the system as the sum of k independent Mt/M/∞ models, with model

i having arrival rate λ(t)pi and exponential service times having mean 1/µi. Then we can write

m(t) = m1(t) + · · ·+mk(t); i.e., we consider the different exponential phases of service as types of

customers and thin the original nonhomogeneous Poisson arrival process into k independent Poisson

processes with rates λ(t)pi. From this representation, we immediately obtain (A.2) above with

Ai ≡
piE[cos(γX/µi)]

µi
and Bi ≡

piE[sin(γX/µi)]

µi
, (A.4)

where X is an exponential random variable with mean 1. We then can apply the formulas

E[cos(cX)] = 1/(1 + c2) and E[sin(cX)] = c/(1 + c2) given in the beginning of §5 of [4] to (A.4) to

obtain (A.3).
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